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AIlIend-This paper is concerned with the investiption of finite extension of a visc:oelutic: multiple
filament and sinaJe layered yirn subjected to axial forces and twistilllIllOllleDtl. The llament in the yam is
considered as a linear viscoelastic slender curved rod with circular cross section .... helical confiIuralion.
The theory of slender curved rods is employed in the anaIytis wbereby die curvature of die fiJmneIIt is
unmed to be IlIIic:ieatly smaIlsueh that the cross section of the IIIImeDt perpeedicular to the uis tI. the yam
is approximately elliptical. In our study. we have also usumed that there is sIippiua between &IIments duriDa
deformation of the yam. Geometric:al noD1inearity in introduced by the resuctioDs in be1ica18IIIIe IIId cross
section of the filament. In order to illustrate the teeImique introcluced 1IeR. in our IIUIIIeric:aI 1IIIlysis. the
extensional relaxation modulus of the filament is derived from a model of tlne-e1emellt·1lOIid IDd Poisson's
ratio of the filament is reprded as constant. Examplesare pnsentcd for the extensions of yarns with fixed ends
~~with~~ !

NOTATION
Go. a radii of filaments

d eqn (SI)
c coeIIcient of kinetic friction
d distance from the ceuter of the yarn to the point of tallpllcy of fiJmneIIts
d eqn (51). POll. I(b)
E tensile relaxation modulus
E eqn (70)

Eo E(O)
F•• Fl" F&, components of the stress resultant vector'i applied axial force

f•.f",f eqn (51)
• ~lit pitch of the helix
i. j. k unit vectors
leo. k constants
fo. k eqn (51)

Lo. L lenalhs of yams
-lo. I lenaths of ftlaments

M•• MI" ~ compoucnts of the moment vector
M applied /Wistina moment

m•• mI" m", 1ft eqn (51)
n number of filaments
P collltlnt force between filaments
p eqn (51)

r.. r radial coordinate of the filament
;.. ; eqn (51)

T time
t 17~

xh X,. Xl rectaDlUlar Cartesian coordinates
~ POII·I(c)

4. 8 small increments
'Y constant
e, axial strain of the yam
e. axial strain of the filament

Bo.' helical anaJes
"D. " prillCipalllOl'lll81 curvatures

i...14. ;'0 unit vectors
;.. p eqns (6) and (II)

(T Poisson's ratio
,... " torsions

#/I polar alJl\e
n anaJe of twist of the yam per unit Ielllth

'/II eqn (51)
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INTRODUCTION

The mechanical behavior of most textile materials exhibits what is known as time
sensitivity. For a yarn subjected to an axial load. creep deformation is observed following
instantaneous elastic response. In order to analyze the yarn problem in a more realistic manner,
the theory of viscoelasticity must be employed. The creep deformation of linearly viscoelastic
continuous filament yarn has been investigated by Jones [1]. His analysis is based on the small
deformation theory whereby geometrical nonlinearity is ignored. Also in Jones' study, the yarn
material is considered to be incompressible; the normal stresses acting on any yarn element in
the transverse directions are assumed to be equal and the shearing strf;sses are neglected. The
finite extension of a linearly viscoelastic two-ply filament yarn has been analyzed by Huang [2]
based on the theory' of slender curved rods[3]. In Huang's study. geometrical nonlinearity is
introduced as a result of reductions in helical angle and filament cross section.

In this paper. we shall study the problem of finite extension of multiple filament linearly
viscoelastic yarns subjected to axial forces and twisting moments at both ends. Similar to the
case of the two-ply filament yarn. we shall treat the filament as a slender curved rod with
circular cross section and helical configw'ation. We shall assume that the curvature of the
filament is sulliciently small such that the cross section of the filament perpendicular to the yarn
axis is approximately elliptical. Also, we shall consider that there is slipping between filaments
during deformation of the yarn. It is found that the creep deformation of the yarn is governed
by two nonlinear intearal equations which is solved numerically by a modified Newton's
method. Two problems have been selected for study, namely, the extension of a yarn with fixed
ends and the extension of a yarn with free ends. Effects of initial helical angle and the
superposition of a twisting moment on the axial extension of the yarn have also-been included
in the study.

GEOMETRY OF THE YARN
Let us consider a long linearly viscoelastic n-ply filament yarn as shown in Fig. 1(a).

(n =2. 3, 4, ...). The yarn consists of a single layer of filaments which form a cylindrical tube.
The cross section of the filament in the undeformed state is considered to be circular with
radius ao. The center line of the undeformed filament is prescribed by the following rectanauJar
Cartesian coordinates:

(1)

where '0 and tPo are the polar coordinates and leo is a constant which is related to the length of
the filament of one turn of twist measured along the axis of the yarn Ito by

;

The unit vectors in the tangential. principal normal and binormal directions of the center line of
the undeformed filament are

·1·
Ao=- (- '0 sin tPoi+ '0 cos ~of+ kok),

Po

Jlo =- (cos tPof + sin tPof),

tio=.! (leo sin flo' - leo cos~+ ,ok)
Po

respectively, where f. f and k are unit vectors in the x" X2 and x3-directions and

(3)

(4)

(5)

(6)

Note that the principal normal of the filament is in the radial direction and toward the axis of the
yarn. The helical angle of the center line of the undeformed filament is

(J - t -I '0
0- an leo' (7)
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(a)

(b) Section A-A

(c)

Fig. I. Geometry of the problem.

Let us define the curvature vector by dB/ds where dB is the infinitesimal rotation vector of the
coordinate axes in A, p. and p-directions in a distance ds alona the center line of the filament.
The principal normal curvatW'e of the center line of the" undofonned filament is then the
component of the curvature in the binormal direction. The torsion of the center line is the
component of the curvatW'e in the tanaential direction.t They are

1 . 8
KO= Po sm 0,

1
7'o=-cos 80

Po
(8)

respectively. The component of the curvature in the principal normal direction is zero.
Let us cut the yam by a plane perpendicular to the axis of the Yam. The cross section is

shown in Fig. 1(b). We sball foDow PbiUips and CosteDo[S] and assume that the curvature of
the filament is sufticientiy small sucb that the cross section of each ftlament is elliptical. Hence
the cross section of the undeformed yam consists of n ellipses tanaent to each other with
center of ellipse at (rocos (2itr/n), '0sin (2i"'n» (i =0, 1, ... n -1). We sball also assume that
the commcm taneeDi of any two neiabborina ellipses passes throuah the center of the cross
section. Since the principel normal of the filament is in the radial direction, the major axis of the
ellipse is 2GePo/1ce and the minor axis is lao- By analytical geometry, we can easily show that

(9)

Equation (9) agrees with the corresponding relation given in [4]. When n =2, we obtain from
equation (9) that '0 =Go which agrees with the result of [2].

The yam is subjected to an axial tension Fand a twisting moment Ai in the direction of the
original twist of the yam. In the deformed state, as a result of contact deformation, the cross
section of the filament is no longer circular. Since the configuration of filament is helical, the
analysis of this type of contact problem is extremely ciiIi,cult. In the following, we sball neglect
the contact deformation and assume that the cross section of the filament in the deformed state
remains circular with radius a. The center line of the filament in the deformed state remains
helical. Let , and • be the polar coordinates of any point on the deformed center line of the
filament. We have equivalent equations identical to eqns (1)-(9) with the subscript 0 deleted.
Hence,

1 . 8
K =-sm ,

p
17' =-cos 8p , (10)

tin Love's text(4). OlD' torsion is referred to as the twist of the filament.
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where
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Also, we have

8 = tan- t f. (11 )

(12)

The distance from the center of the cross section of the yarn to the point of tangency of two
ne_boring ellipses is found as

(13)

The line of contact of the deformed filament is helical with radius d.
Next, let us consider a cross section of the deformed filament as shown in Fig. l(c). To

determine the central angle 2fJ between the points of contact, let us first project the circular
cross section on the plane perpendicular to the axis of the yarn. The projection is also an ellipse
with major axis 2a and minor axis 2aJc1p as shown by dotted line in F.... 1(b). Note that the
projection of the hefical line of contact on the plane perpendicular to the axis of the yarn is a
circle with radius d and center at O. The angle fJ can be determined from the intersection of the
projection of the cross section and the projection of the line of contact. Similar approach for
the determination of fJ bas also been employed by Costello and Phillips [6]. It is found that

(14)

Thus after d is calculated by eqn (13), fJ can be determined by eqn (14). Note that for the
two-ply filament yarns, n =2, d =fJ = O. Hence the filaments are in contact to each other at the
center tine of the yearn. The same conclusion has also been drawn in {2}.

FORMULATION OF THE PROBLEM

In the following, we shall denote the components of any quantity in the tangential, principal
normal and binormal directions by subscripts A, ,... and " respectively. Each filament will be
treated as a 1011I slender curved rod. The components of the stress resultant acliRl on the cross
section of the filament are denoted by FA, F,. and F. and the components of moment acting on
the cross section are denoted by MA, M,. and M.. The components .of the distributed force per
unit length of the filament are PA, P,. and P. and the components of the distribution moment per
unit length are mA, m,. and m..

Along the line of contact, there exist the normal distributed force P and tangential
distributed forces Q and R as shown in rig. 1(c). Hence

and

PA =0, P,. =- 2P cos fJ, P. =2Q cos fJ

mA =2Qa, m,. =2Ra sin fJ, m. =O.

(15)

(16)

If we treat the filament as a one-dimensional stender body, we can obtain the equations of
equilibrium of all forces and moments acting on an element of the filament from the theory of
slender curved rods (3). Since the yarn is considered to be long, all derivatives of the stress
results and moments with respect to the arc length of the filament must vanish. The equations
of equilibrium can be written as

F,.K -PI. =0. (17)
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F;.I< - F.:r + p,.. =: O.

F./r+p.. =O.

M,..K -mA. = O.

MAK - M/r- F.. + m,.. =0.

With eqns (15) and (16), eqns (17)-(22) become

F.. =MI;< = PI' == rnA =: Q =O.

F;.K - F,:r - 2P cos fJ =O.

MA.l< - M"T +2Ra sin fJ - F.. =O.
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(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

In the following. we shall consider that during deformation of the yarn. there is slipping
between filaments. Let us denote the coefficient of kinetic friction between filaments by c. We have

R=cP.

Here eqn (25) can be rewritten as

MAIC - M"T +2cPa sin (3 - F" == O.

(26)

(27)

Let us set tbe local coordinates in the tangential" principal normal and binormal directions.
Under the assumption of small strains. the Clebsch-Basset moment-eurvature relations for
elastic slender curved rods [4] are

1rtl
4

MA. =GJ(.,. - To) == 4(1 + u) E(.,.- "'0).

M,..==O.

'l'a"
M" =m(K - ICo) 11: T E(K - reo).

(28)

(29)

(30)

where E1 is the bending stiffness. GJ is the torsional stiffness and v is Poisson's ratio,
Equation (29) is derived based on the faet that the component of curvature in the principal
normal direction is zero for both the undeformed and deformed filaments. In the visco-elastic
case, in view of the absence of data, we shall assume Poisson's ratio to be constant and treat
Young's modulus E in eqns (28) and (30) as an intearal operation according to the edt·
respondence principle in viscoelasticity. In the followina. we shall use the notation

where T is the time. In the viscoelastic case eqns (28) and (30) are

.. .. k
M - 'It'll B*d( _)= 1TQ E*d ll )

A - 4(1 +u} "''''0· 4(1 +v) Vi' '
1TQ" 'I'D'" .! )

M"=TE*d(K-I<O)=TE*d\iJI· ,

(31)

(32)

(33)

where B(T} is the axial tensile relaxation modulus of the filament. Equation (29) still holds. By



584 N. C. HUANG

eqns (0), (24), (27), (32) and (33), we obtain

F" =a(p%+ cak tan (J)-l {'IT:) [1:U' E*d(~) -kE*d~)]+ crFA tan {J }. (34)

The contact force between filament can be found from eqn (24) as

1
P =-2Q (FAK - F,,1').

cos fJ
(35)

In the elutic case, as a result of Poisson's effect. the normal strain in the transverse
direction of the filament is

a FA
--1 =- U''=:Yj;.
ao 'ITa E (36)

By means of the correspondence principle. the tangential component of stress resultant in the
filament in the viscoelastic case is

(37)

The overall equilibrium of the internal forces and the applied force F requires that [3,5}.

-. .. n
F =If(FA cos fJ +FI! sin fJ) =- (kFA + rF,,).

p

Similarly, the overall equilibrium in moments requires

-n
M =-(kMA + rM.. + ,J-FA - rkF.. ).

p

With eqns (32) and (33), we can rewrite eqn (39) as

(38)

(39)

(40)

Let lJS cOMider a yam of Mo turns in the undeformed state. After deformation it eb.... to M
turns. Renee the lllldeformed • deformed Ie_s of the yam measured in the direction of yam
axis. are

(41)

respe£tively. The undeformed and deformed lengtb of the filament are

respectively. Hence the axial strain of the yam is

L Mk
~ =--1=---1

'J Lo Moko

and the axial strain of the filament is

I . Mp
fA =--1 =---1.

10 Mollo

(42)

(43)

(44)
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As a result of Poisson's effect, we have

a
--I =-0'E0\.ao

After elimination of Eo\ and M/Mo from eqns (43)-(45), we obtain

The angle of twist of the yarn per unit length is

n=eM -~0)27T =~ (Zo- I)'

After elimination of Eo\ and M/Mo from eqns (44), (45) and (47), we obtain
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(45)

(46)

(47)

(48)

Hence if the ends of the yarn are unconstrained, elongation of the yarn wili be coupled by a
twist. On the other hand, if the ends of tbe yarn are constrained sucb that 0 = 0, we bave an
additional constrained condition from eqn (48). It is

(49)

In this case. if a is known. p can be determined from eqil (49) and k can be found from the
relation derived from eqns (11) and (12).

(50)

Finally. 8 can be found from eqn (11).

METHOD OF SOLUTION

Let us denote E(O) by Eo and introduce the following dimensionless quantities:

E(T)=E(T)/Eo. fo=ko/ao. ;o=ro/ao, Po=Po/ao. a=a/ao. k=/eJao.

- FA F.
'=rlao. P=p/ao. d=dlao. /0\ = Eo'lrao1• f.-Ee;tJi'

P -.F "it
p =Eo'lrao' / - Ee'lraoz, m=Ee7ao" lIII· Oao. (51)

For given values of n. 80• the initial geometry of the yarn is determined from the followina
equations:

'Ir ( 'Ir)112
fo=csc; cof80+cos2

; •

;0 =ko tan 80.

Po =(;02+ fo~t12.

(52)

(53)

(54)

Under given values of c. CT.! and mand given function E(T). the viscoelastic deformation of
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the yam is governed by the following equations:

)

-112

r=ak(PsinZ.;f-a2 cos?; I

p=(r+p)"2,

J "'" ~ (£12 + i2) (P. sin2f- 02COS2~) -112 COS *,
cos (J ={P2_{p~tP+ f1-) - £12f2JI/~/(£1n,

{ 1 -:zu.~H';: --a lC~"a,

iT

-1 -

I" =fi(,'+ ciif tan tn-I {~ [1:0' t*d(~) - kE*d(~)1+ Cf/A tan f1 },

p =(fA - k/,,)/(2;2 cos (3),

- n -g = f -""i(k!A + 'If,,) =0,

II JIl m-i {~4 [1:0' E*d(~)'" 18*;(7)]+ f('If. - kf,,)}=o.

E, =e[t+;O-£1}]-I,

ttJ =~ {~[I+;(l-£1)J- t}.

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

Equations (62) and (63) are simultaneous equations for the calCulation of a(n and ken. The
external force F and moment Mare applied at T =0, The instantaneous response at T =0+ is
elastic. The governing equations for the instantaneous elastic response are

/A =.1 j2(1 - a), (66)
(J'

1,,=i(p2+ caktantrr' {~) [1 :O'(j-b)-ktb-~)J+cr!A tan fJ }. (67)

g = i -~(f/A + 'i,,) =0, (68)
p

h =Ii -j{~[t:0'(J-b)+'<;-~)J+ f(f/A -kf,,>}=O. (69)

In order to illustrate our method of analysis, we shall consider that the viscoelastic
characteristics of the filament can be derived from a model of three-element solid which
consistsofa s.riaIanda Kelvinelement(i.e. a spriacanddasbpot parallel) inseries. The relaxation
modulus of the three-elemeat solid as expressed in a dimensionless form can be found in [7]. It is
(1). It is

(70)

where fJ and 1" are materiaJ constants. 'The dimensionless delayed elastic modulus y has its value
in the ranee Os,.< 1. Let us define a dimensionless time t = TIp. Equation (70) becomes

(71)
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In our computation. we shall employ Lee and Roger's method[8] to evaluate the hereditary
integral numerically. In our numerical scheme. we first divide I into N intervals with I. == 0+ and
IN+I == T. We have

where

I
SN+I == E(IN+I)[/(t.) - 10] -2 [I + E(tN+I- IN )]/(tN)

IN-I

+ -2 ~ ([E(tN+1 - 1;+1) + E(tN+1 - 1,)][/(1,+1) - I(t,»}/-.

(72)

(73)

and 10 is the value of f in the undeformed state. Note that when time increases step by step. at
1== IN+h SN+I involves /(1,) for j == 1.2•... N which have been determined in the previous time
steps. The only unknown in eqn (73) is f(IN+'>. By using eqn (73), an integral equation of
Volterra's type can be reduced to an algebraic equation.

In the following, we shall analyze the problem of finite extension of yams with two types of
end conditions.

Yam with fixed ends
When the ends of the yarn are fixed, (d == O. The fixed-end twistina moment is determined by

eqn (69) for the instantaneous elastic response and by eqn (63) for the viscoelastic response.
For each time step, we assume a value for" and compute p and f by

(74)

and

(75)

The values of f, d, (J, f,. and I" are determined respectively by eqns (55), (57)-(60). The correct
value of " must fulfill the condition that the value of , as determined by eqn (68) or (62) is zero.
We shall use a modified Newton's iterative method for the determinalion ofi. In this procedure
we select three values of " as given by di, ", - A and "/ +A, where A is a small number, and
compute values of I which are denoted by lit 12 and 13. The derivative dg/di at " • di can be
approximated by the following central difference equations:

(16)

Hence, according to Newton's iterative formUla, the new value of i in the iteration would be

(77)

Our iterative procedure continues until the absolute value of , is smaller than a certain
prescribed value. It is noted that in our problem, the rate of CODveqeDCI is fut.

Computations are first carried out for 60 =150
, n - 4, ." '"' 0.7, C. 0.2 and cr II: 0.45. In FII.

2. the creep curves 1,(1) are shown by 30lid lines for various values of {. The finite jumps at
I - 0 indicate the inIaIntaneous elastic response of the yam. At I - ao, III creep earvn approach
asymptotically the value corresponding to the delayed elutic modulus S(ao). 0.7. The Axed end
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twisting moments rii(t) are also shown by dotted lines. It is noted that the fixed end twisting
moment is nearly constant for tbis case. In order to show tbe geometrical nonlinearity, fy(l) is
plotted aaainst i in Fig. 3. The f y (1) curve as determined by tbe linear theory is also shown by a
dotted line for comparison. Note that the nonlinearity becomes evident when j is large. The
helical angle of the filament 8(l) is plotted againstjin Fig. 3. As we may expect, 8(1) decreases with
increasingl In Fig. 4, the dependence of Ey(l),!A(l)and m(1)OR n are shown for j = 0.02. When n
increases, both Ey(l) and A(1) decrease. The value of rii(l) increases with n because the radial
distance 1(1) increases with n. The dependence of IA(l) and m(1) OR the initial helical angle 90 is
shown in Fig. 5for n =4and j = 0.02. When 80 = 0, all filaments are straight. Hence, 110 (1) =0.005
and m(l) = O. It is found that both IA(l) and m(l) increase with 80•

0.20 r---..,----,.--,..--...,.---..200

o 0.5 1.0 US 2.0 2.5 3.0
t

FJI. 2. 1,(1, and m(l) curves for ,. - IS·, iii - 0, (fixed
...) 11-4, y-O.7, c-8.2. ,·US and various

valua of f.

0.005,

o

0.02

--01>'2---------

0.01

-o']),--,,=, e;;-;)--
--iiilt)

0.15
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T
FJI. 3. ..,m and 1(1) VI f tvrws for ..a lS". iii '" 0,

(Ixed ends) lI a 4. y a O.1. C -0.2 and 0' ..G.4S.

0.016 0.008 0.020
I
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/
X / iii (I)
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• 0.002 /'
0.004 0 / - ',,(I) 0.005
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0 //"

0
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I 0
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" 'I......)
'" 4. V..... of 1,(1) and MI) for ,,-ISO. iii -0. F,.. S. 1.(1) .... Iit(l) ana for iii - O. (tlMd ends),
(hed ends' ,,-0.7. c-O.2, 0'·0.45. f"o.112 and " .. 4• .,-0.7. c - 0.2. 0''' US. ! .. 0.112 and various

various values of n. values of '00
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Yam wilh free ends
When the ends of tbe yarn are free. til =0 and ~:;t! O. In this case, we have two unknowns ii

and f to be determined. Apin, we shall employ a modified Newton's iterative method in our
computation. First, we try out a set of values a:: iii and f :: k; and compute 8 and 11 according
to eqns (68) and (69) for tbe instantaneous elastic response and eqns (62) and (63) for the
viscoelastic response. They are denoted by (gl> hI)' Next, we select four sets of values for ii
and f in the neighborhood of ii:: iii and f:: k;. They are (lit - A, k;), (iii +A, k;), (lit, k; - 8),
(ii;, k; + 8). We have four additional sets of calculated values of 8 and h. They are (g2, h2 ),

(83, h3), (8", h,,) and (85, h5) respectively. The partial derivatives of 8 and h with respect to ii and
f as evaluated at ii =iii and f:: k; can be approximated by the following central difference
equations:

(78)

(79)

The new set of i and f can be determined by the following equations given in Newton's iterative
method for two variables:

(SO)

where

(81)

The iterative procedure continues until the value of ii2+P is smaller than a certain prescribed
value. It is found that the rate of convergence is also fast for the case of two variables.

The creep curves, ',(1), are shown by solid lines in FJg. 6 for '0:: 15°, It "" 4, '1" 0.7, c == 0.2,
tT =0.45 and difterent values of 1. In comparison with the creep curves sbown in rIB. 2, it is
seen that additional uiaI strain of the yarn caD be introduced if tile ends of the yarn is allowed
to twist. It is found that when the ends of the yarn is free, the axial _extension of the yarn is
accompanied by an untwist of' the yarn. The anaJes of untwist per unit lenatb of the yam,
- ~(t), ire also shown in Fig. 6by dotted lines. Tbeelect ofsuperpositionofa twistinl moment on
tbe elonption of the yarn is shown in F'Jg. 7. It is noted that when Iii increases, the helical angle
increases and consequently ,,(I) decreases. When til is sufticiently 1arJe••,(1) caD become
negative. Thefilament stress f" (l) and the contact force p (1) are also plotted apinst til in F'II. 7. It
is found that f" (1) is essentially aovemed by f and the elect of the additional twisting moment on
f,,(1) is insignificant. The contact force p(1) increases slightly with Iii.

DISCUSSION

(1) The finite extension of elastic wire cables bas been investipted by CosteUo and
Phillips[9]. Their problem corresponds to our problem with T "" O. The conclusions drawn in
their study are very much similar to what we have obtained here for the viscoelastic problem.

(2) The mechanical behavior of a yarn is ,ovemed chiefly by three faetor......wne, tempera
ture and humidity. In this paper, our investi,ption is focused on the t:ime-dependent cbarac
teristics of the yarn and ignored the elects of temperature and humidity. Hence our problem is
restricted to the case of isothermal environment with constant humidity. Should the tempera
ture and humidity also be time dependent the relaxation modulus used in our analysis must be
modified to include the elect of temperature and humidity.

(3) Our analysis is based on a model where the deformed cross section of the ftlament
remains circular. In reality. the contract of filaments are of Hertz's type in both undeformed
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and deformed states. Additional geometrical nonlinearity can be introduced by the Hertz's
contact deformation of the filament. The result given in this paper is valid if the width of
contact is small in comparison with the diameter of the filament.

(4) It is noted that the actual cross sections of filaments are not perfectly circular. Also their
distribution is not entirely uniform. To analyze a yarn with nonuniform filaments. statistical
theory must be employed. However, our study would still provide a general feature of the finite
deformation of viscoelastic multiple filament yarns.
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