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Abstract—This paper is concerned with the investigation of finite extension of a viscoelastic multiple
filament and single layered yarn subjected to axial forces and twisting moments. The filament in the yamn is
considered as a linear viscoelastic siender curved rod with circular cross section and helical configuration.
The theory of slender curved rods is employed in the analysis whereby the curvature of the filament is
assumed to be sufficiently small such that the cross section of the filament perpendicular to the axis of the yarn
is approximately elliptical. In our study, we have aiso assumed that there is slipping between filaments during
deformation of the yarn. Geometrical nonlinearity in introduced by the resuctions in helical angle and cross
section of the filament. In order to illustrate the technique introduced here, in our numerical analysis, the
extensional relaxation modulus of the filament is derived from a model of three-clement solid and Poisson’s
ratio of the filament is regarded as constant. Examples are presented for the extensions of yarns with fixed ends
and yams with free ends. ;

NOTATION
radii of filaments
eqn (51)
coefficient of kinetic friction
distance from the center of the yarn to the point of tangency of filaments
eqn (51), Fig. 1(b)
tensile relaxation modulus
eqn (70)
E(0)
components of the stress resultant vector
applied axial force
eqn (51)
pitch of the helix
unit vectors
constants
eqn (51)
lengths of yarns
lengths of filaments
components of the moment vector
applied twisting moment
m,, m,,m,m eqn(51)
number of filaments
constant force between filaments
eqn (51)
ro. r  radial coordinate of the filament
fo. 7 eqn (51)
time
t TIB
Xy, X3, X3 rectangular Cartesian coordinates
B Fg 1)
A, small increments
¥y constant
¢, axial strain of the yarn
€, axial strain of the filament
8,0 helical angles
. X,k principal normal curvatures
Ao, o, o unit vectors
Po.p eqns (6) and (11)
o Poisson’s ratio
To: 7T torsions
¢ polar angle
Q) angle of twist of the yarn per unit length
‘w eqn (51)

tThis research is supported by the National Science Foundation Grant ENG76-05775.

$
'S

e |

- T m

Frell ¢+ 0
ih = k,?'i.. et 5 eyt mn. & o

S
ES
=X

< U

$S VOL. 14 NO. =D 571
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INTRODUCTION

The mechanical behavior of most textile materials exhibits what is known as time-
sensitivity. For a yarn subjected to an axial load, creep deformation is observed following
instantaneous elastic response. In order to analyze the yarn problem in a more realistic manner,
the theory of viscoelasticity must be employed. The creep deformation of linearly viscoelastic
continuous filament yarn has been investigated by Jones[1]. His analysis is based on the small
deformation theory whereby geometrical nonlinearity is ignored. Also in Jones’ study, the yarn
material is considered to be incompressible; the normal stresses acting on any yarn element in
the transverse directions are assumed to be equal and the shearing strgsses are neglected. The
finite extension of a linearly viscoelastic two-ply filament yarn has been analyzed by Huang[2]
based on the theory of slender curved rods[3]. In Huang’s study, geometrical nonlinearity is
introduced as a result of reductions in helical angle and filament cross section.

In this paper, we shall study the problem of finite extension of muitiple filament linearly
viscoelastic yarns subjected to axial forces and twisting moments at both ends. Similar to the
case of the two-ply filament yarn, we shall treat the filament as a slender curved rod with
circular cross section and helical configuration. We shall assume that the curvature of the
filament is sufficiently small such that the cross section of the filament perpendicular to the yarn
axis is approximately elliptical. Also, we shall consider that there is slipping between filaments
during deformation of the yarn. It is found that the creep deformation of the yarn is governed
by two nonlinear integral equations which is solved numerically by a modified Newton’s
method. Two problems have been selected for study, namely, the extension of a yarn with fixed
ends and the extension of a yarn with free ends. Effects of initial helical angle and the
superposition of a twisting moment on the axial extension of the yarn have also-been included
in the study.

GEOMETRY OF THE YARN
Let us consider a long linearly viscoelastic n-ply filament yarn as shown in Fig. 1(a).
(n=2,3,4,...). The yarn consists of a singie layer of filaments which form a cylindrical tube.
The cross section of the filament in the undeformed state is considered to be circular with
radius a,. The center line of the undeformed filament is prescribed by the following rectangular
Cartesian coordinates:

X\ =1oC08 do, X2 =TroSin @y, X3 = koo, m

where r, and ¢, are the polar coordinates and ko is a constant which is related to the length of
the filament of one turn of twist measured along the axis of the yarn ko by

ho = 2mko.

The unit vectors in the tangential, principal normal and binormal directions of the center line of
the undeformed filament are

Ao= i(— Fo Sin ¢oi + ro cos ¢of + kok), (3)
fio = —(COS Pof + sin @of), 4)
6o=i(kosin il = ko COS bof + rok) )

respectively, where ,  and k are unit vectors in the X1, X2 and xs-directions and
Po=(ro* + ko*)'™. (6)

Note that the principal normal of the filament is in the radial direction and toward the axis of the
yarn. The helical angle of the center line of the undeformed filament is

8o =tan™" 22, )

ko
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Fig. 1. Geometry of the problem.

Let us define the curvature vector by dH/ds where dH is the infinitesimal rotation vector of the
coordinate axes in A, si and s-directions in a distance ds along the center line of the filament.
The principal normal curvature of the center line of the undeformed filament is then the
component of the curvature in the binormal direction. The torsion of the center line is the
component of the curvature in the tangential direction.t They are

1. 1
Ko = —Sin By, To=-—COS 0 8
0 po 0 0 po (1] ()

respectively. The component of the curvature in the principal normal direction is zero.

Let us cut the yarn by a plane perpendicular to the axis of the yarn. The cross section is
shown in Fig. 1(b). We shall follow Phillips and Costello[5] and assume that the curvature of
the filament is sufficiently small such that the cross section of each filament is elliptical. Hence
the cross section of the undeformed yarn consists of n ellipses tangent to each other with
center of ellipse at (rocos (2iw/n), rosin (2im/n)) (i=0, 1,...n—1). We shall also assume that
the common tangent of any two neighboring ellipses passes through the center of the cross
section. Since the principal normal of the filament is in the radial direction, the major axis of the
ellipse is 2aapu/ko and the minor axis is 2a,. By analytical geometry, we can easily show that

-112
ro= aoko(ko’ sin? 1,:' - ag’ cos? -n‘[) . )

Equation (9) agrees with the corresponding relation given in [4]. When n = 2, we obtain from
equation (9) that 7, = a, which agrees with the result of [2].

The yarn is subjected to an axial tension F and a twisting moment M in the direction of the
original twist of the yarn. In the deformed state, as a result of contact deformation, the cross
section of the filament is no longer circular. Since the configuration of filament is helical, the
analysis of this type of contact problem is extremely difficult. In the following, we shall neglect
the contact deformation and assume that the cross section of the filament in the deformed state
remains circular with radius a. The center line of the filament in the deformed state remains
helical. Let r and ¢ be the polar coordinates of any point on the deformed center line of the
filament. We have equivalent equations identical to eqns (1)-(9) with the subscript 0 deleted.
Hence,

x=Lsing, r=lcosé, (10)
p P

tIn Love’s text[4], our torsion is referred to as the twist of the filament.
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where

p=(rP+kH»"”,  6=tan™ (1

Also, we have
T g am\
r=ak(kzsm2;-a cos ;) ) (12)

The distance from the center of the cross section of the yarn to the point of tangency of two
neighboring ellipses is found as

d==(a’+k? (k2 sin? T — g2 cos? E)_m cos — (13)
n n )

a
k n
The line of contact of the deformed filament is helical with radius d.

Next, let us consider a cross section of the deformed filament as shown in Fig. I(c). To
determine the central angle 28 between the points of contact, let us first project the circular
cross section on the plane perpendicular to the axis of the yarn. The projection is also an ellipse
with major axis 2a and minor axis 2ak/p as shown by dotted line in Fig. 1(b). Note that the
projection of the hefical line of contact on the plane perpendicuiar to the axis of the yarn is a
circle with radius d and center at 0. The angle B can be determined from the intersection of the
projection of the cross section and the projection of the line of contact. Similar approach for
the determination of B has also been employed by Costello and Phillips[6]. It is found that

cos B = {p*—[p*(d* + k*) — a*k*1"*}(ar). (14)

Thus after d is calculated by eqn (13), 8 can be determined by eqn (14). Note that for the
two-ply filament yarns, n = 2, d = 8 = 0. Hence the filaments are in contact to each other at the
center line of the yearn. The same conclusion has also been drawn in {2].

FORMULATION OF THE PROBLEM

In the following, we shall denote the components of any quantity in the tangential, principal
normal and binormal directions by subscripts A, u and » respectively. Each filament will be
treated as a long slender curved rod. The components of the stress resuitant acting on the cross
section of the filament are denoted by F,, F, and F, and the components of moment acting on
the cross section are denoted by M,, M, and M,. The components of the distributed force per
unit length of the filament are p,, p, and p, and the components of the distribution moment per
unit length are m,, m, and m,.

Along the line of contact, there exist the normal distributed force P and tangential
distributed forces Q and R as shown in Fig. 1(c). Hence

=0, p.=—2PcosB, p,=2Qcosp 15)

and
m, =2Qa, m, =2RasinB, m,=0. (16)
If we treat the filament as a one-dimensional siender body, we can obtain the equations of
equilibrium of all forces and moments acting on an element of the filament from the theory of
slender curved rods{3). Since the yarn is considered to be long, all derivatives of the stress
results and moments with respect to the arc length of the filament must vanish. The equations

of equilibrium can be written as

F.x—p, =0, (a7
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Fik—Fz+p, =0, (18)
For+p,=0, (19)

M"K - "h = 0» (20)
Myx-Mzs~F,+m, =0, 2n
Mg+ F,+m,=0. s

With eqns (15) and (16). eqns (17)~(22) become

F,=M,=p,=m=Q=0, 23)
Fix~Fsr-2PcosB=0, (24
M,k — M,r+2RasinB—F, =0. (25)

In the following, we shall consider that during deformation of the yarn, there is slipping
between filaments. Let us denote the coefficient of kinetic friction between filaments by c. We have

R=cP. (26)

Here eqn (25) can be rewritten as
My —Myz+2cPasinB—-F,=0. 2n
Let us set the local coordinates in the tangential, principal normal and binormal directions.

Under the assumption of small strains, the Clebsch-Basset moment-curvature relations for
elastic slender curved rods[4] are

g

Mh - G](T ?0) a4(‘ + )E(f.-' 7ﬂ)v (28)

M, =0, (29)
£

M, = El{x —%)*E%E(K'Ka)‘ (30)

where EI is the bending stifiness, GJ is the torsional stiffness and o is Poisson's ratio,
Equation (29) is derived based on the fact that the component of curvature in the principal
normal direction is zero for both the undeformed and deformed filaments. In the visco-elastic
case, in view of the absence of data, we shall assume Poisson’s ratio to be constant and treat
Young’s modulus E in eqns (28) and (30) as an integral operation according to the cot-
respondence principle in viscoelasticity. In the following, we shall use the notation

= T df (¢,
P df L F(T-t,)—ﬁ—“-ld:.. 61

where T is the time. In the viscoelastic case eqns (28} and (30) are

k
M= +0_)E*d('r = +,)E*‘(p) 32

M,z—f—g*d(x xo)w——E*d(;g) 33

where E(T) is the axial tensile relaxation modulus of the filament. Equation (29) still holds. By
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eqns (10), (24), (27), (32) and (33), we obtain

3
Fo=a(t+ caktan By {7 [ 1o Bvd (55) - kE%d () |+ crFuang). 69

The contact force between filament can be found from eqn (24) as

I

P=2cosB

(Fik— For). (35)

In the elastic case, as a result of Poisson’s effect, the normal strain in the transverse
direction of the filament is

a

—_—]=— £y
6 T mE G6)

By means of the correspondence principle, the tangential component of stress resultant in the
filament in the viscoelastic case is

2
=-T4 px
F, p E*da. (37

The overall equilibrium of the internal forces and the applied force F requires that [3, 5].
F = n(F, cos 8+ F, sin s)=%(m +IF,). (38)
Similarly, the overall equilibrium in moments requires
M= ;';-(kM, +rM, + PF, - IkF,). 39)

With eqns (32) and (33), we can rewrite eqn (39) as

M= % {"—f: [—1-{—; E*d (f’) +rE*d (I-,’,)] +NIrF, - kF,)}. (40)

Let us consider a yarn of M, turns in the undeformed state. After deformation it changes to M
turns. Hence the undeformed and deformed lengths of the yarn measured in the direction of yarn
axis are

Lo=2naMoko, L =2aMk 41
respectively. The undeformed and deformed length of the filament are
lo = 27 Mypy, [=2nMp 42)

respectively. Hence the axial strain of the yarn is
€ =— ] = (43)
and the axial strain of the filament is

6=r-l=E—1 (44)
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As a result of Poisson’s effect, we have

—=1 = — O€,. (45)

After elimination of ¢, and M/M, from eqns (43)-(45), we obtain

1
e,=%[1+;(1-aio)]-1. (46)
The angle of twist of the yarn per unit length is
M-M)2z _1(M_
Q - ko ( o 1). @

After elimination of €, and M/M, from eqns (44), (45) and (47), we obtain

LB 0-2) )

Hence if the ends of the yarn are unconstrained, elongation of the yarn will be coupled by a
twist. On the other hand, if the ends of the yarn are constrained such that £} =0, we have an
additional constrained condition from eqn (48). It is

peafio1(0-2)]

In this case, if a is known, p can be determined from eqn (49) and k can be found from the
relation derived from eqns (11) and (12).

=3 {o- a4 [0~ ap-sap? cot’%]m}. (50)

Finally, 6 can be found from eqn (11).

METHOD OF SOLUTION
Let us denote E(0) by E, and introduce the following dimensionless quantities:

E(T)=E(T)Es, ko=kolao, Fo=rolas, Po=polas, d=alas, k=kla,,

7=ﬂao, ﬁ=dao, ngla(h fA:E%O” frg'i.{;—h
P - .F M
p m9 f Eoﬂ'an:’ 'ﬁ E."ao s, @ nao- (51)

For given values of n, 6, the initial geometry of the yarn is determined from the following
equations:

- 12
ko= csc % (cot2 0, + cos? %) , (52)
Fo= ko tan 6, (53)
o= (P + ko?)'™. (54

Under given values of c, o, f and /i and given function E(T), the viscoelastic deformation of
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the yarn is governed by the following equations:

-2
Fe &‘E(P sin*%w d’cos? %) , (53)
5= (P + B9, (56}
=L@+ B (Psin T- 2 cor L) " cos
3 sin’ n«a cos -—) cos ;. {5
cos 8 = {§*— [5%(d*+ ) — 3*k%)'™(ap), (58)
1 c1ce ie
fa*”;ﬂz *dd, 59
3 i
s —t}a ~ k P F }
f, = a(@*+ cak tan B) { [;ME d(;,) iE d(?) +crmana}, 60)
p ={Ff — kf, (23 cos B), (1)
g=f—-§{§£.+iﬁ}=§. (62)
o _MfETE K\, sinsf F =\1_
hi -2 [ Ba(3) + rEa(F)] + ot - 1)} =, ©3)
2% i [P N
. gA‘%“ a}} 1, (64)
LA 1. =T
m-&{ﬁ [Ha(l a)] 1}. (65)

Equations (62) and (63) are simultaneous equations for the calculation of (T) and &(T). The
external force F and moment M are applied at T = 0. The instantaneous response at T = 0" is
elastic. The governing equations for the instantaneous elastic response are

h=2adi-a), (66)
f, ="+ cakn gy {5 {1 M(: 5%) 72 D)+ ot an g, ®7)
g =F~3 (&, + ) =0, (68)
k= mw{ [1 ; = )+?(33 -’:)}H(fn kf.}} (69)

In order to illustrate our method of analysis, we shall consider that the viscoelastic
characteristics of the filament can be derived from a model of three-element solid which
consists of a spring and a Kelvin element (i.¢. a spring and dashpot parallel) in series. The relaxation
modulus of the three-element solid as expressed in a dimensionless form can be found in [7]. It is
nhtis

ENy=y+(1=-y)e ™, (70)

where 8 and y are material constants. The dimeasionless delayed elastic modulus y has its value
in the range 0 ¥ < 1. Let us define a dimensionless time ¢ = /8. Equation (70) becomes

E)=y+(1-yre™ (7
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In our computation, we shall employ Lee and Roger’s method[8] to evaluate the hereditary
integral numerically. In our numerical scheme, we first divide ¢ into N intervals with f, = 0* and
tne1= T. We have

E*df = SN+I+%“+E-(‘N+l_‘N Nf(tnar ) (72)

where
Sn+1= E(tna)[f(1) —fo]’% [14 E(tnei =t (tN)
N - -
% Z {{E(tns1 = tiv)) + E(tner = WS (Gin) = F(8D1} (73)

and f, is the value of f in the undeformed state. Note that when time increases step by step, at
t = tnsy, Snag involves f(8;) for i = 1,2,... N which have been determined in the previous time
steps. The only unknown in eqn (73) is f(In+). By using eqn (73), an integral equation of
Volterra’s type can be reduced to an algebraic equation.

In the following, we shall analyze the problem of finite extension of yarns with two types of
end conditions.

Yam with fixed ends

When the ends of the yarn are fixed, = 0. The fixed-end twisting moment is determined by
eqn (69) for the instantaneous elastic response and by eqn (63) for the viscoelastic response.
For each time step, we assume a value for @ and compute 5 and k by

-=ﬁo[1+£_-(l—ﬁ)] (74)

and
P = % {5’ N [(ﬁ’- 32~ 48%* cot? %]m}. (75)

The values of 7, d, B, f, and f, are determined respectively by eqns (55), (57)-(60). The correct
value of d must fulfill the condition that the value of g as determined by eqn (68) or (62) is zero.
We shall use a modified Newton's iterative method for the determination of a. In this procedure
we select three values of d as given by &, d,— A and 4, + A, where A is a small number, and
compute values of ¢ which are denoted by g,, g, and g;. The derivative dg/dd at 4 = &, can be
approximated by the following central difference equations:

= g = ..1— -
& =3z ams, 2B (8- 22). (76)
Hence, according to Newton's iterative formula, the new value of 4 in the iteration would be

ai+l_a‘—§_=a‘—.EL m)
g -8

Our iterative procedure continues until the absolute value of g is smaller than a certain
prescribed value. It is noted that in our problem, the rate of convergence is fast.
Computations are first carried out for 6,=15°, n =4, y=0.7, c = 0.2 and o = 0.45. In Fig.
2, the creep curves ¢, () are shown by solid lines for various values of f. The finite jumps at
t = 0 indicate the instantaneous elastic response of the yarn. At ¢ = o, all creep curves approach
asymptotically the value corresponding to the delayed elastic modulus E(x) = 0.7. The fixed end
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twisting moments #i() are also shown by dotted lines. It is noted that the fixed end twisting
moment is nearly constant for this case. In order to show the geometrical nonlinearity, €,(1) is
plotted against f in Fig. 3. The ¢,(1) curve as determined by the linear theory is also shown by a
dotted line for comparison. Note that the nonlinearity becomes evident when f is large. The
helical angle of the filament 6(1) is plotted against f in Fig. 3. As we may expect, 8( 1) decreases with
increasing f. In Fig. 4, the dependence of ¢,(1), f,(1) and (1) on n are shown for f = 0.02. When n
increases, both &,(1) and f,(1) decrease. The value of /(1) increases with n because the radial
distance F(1) increases with n. The dependence of f,(1) and r#(1) on the initial helical angle 8, is
shown in Fig. 5 for n = 4 and f = 0.02. When 6, = 0, all filaments are straight. Hence, £,(1) = 0.005
and m(1) = 0. It is found that both f,(1) and (1) increase with 8.
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Yarn with free ends

When the ends of the varn are free, /1 = 0 and o 0. In this case, we have two unknowns &
and k to be determined. Again, we shall employ a modified Newton’s iterative method in our
computation. First, we try out a set of values a = & and k = k; and compute g and h according
to eqns (68) and (69) for the instantaneous elastic response and eqns (62) and (63) for the
viscogiastic response. They are denoted byh(g.,_h;). Next, we setect_fom’ sets of values for &
and k in the neighborhood of 4 =d; and k = k. They are (&—A, k), (di+4A, k), (d, k- &),
{d@: k; + 8). We have four additional sets of calculated values of g and k. They are (g3, hy),
(g3, 13), (g4, hy) and (gs, Bi5) respectiyely. The partial derivatives of g and h with respect to d and
k as evaluated at @ = 4; and k = k; can be approximated by the following central difference
equations:

F¥ = 2A (83 82}* 3@ OA (b3 h!)v (;8)
.1 ok o L (s~ ha). (19)
W (85— 84), 28 (hs—~ hy)

The new set of & and k can be determined by the following equations given in Newton’s iterative
method for two variables:

lf oh_, o8\ r _r_1(, 3% _ah
G =8i~=\g1==—h = Ky - “-g&i—h
=4 D(g’ ak ’ak) ko =k D(k’aa g'aa) (80)
where
D=8k _ g oh
da ok ok aa’ @1

The iterative procedure continues until the value of >+ k? is smaller than a certain prescribed
value. It is found that the rate of convergence is also fast for the case of two variables.

The creep curves, &,(t), are shown by solid lines in Fig. 6 for §,=15°,n =4,y =07, c = 0.2,
o =0.45 and different values of f. In comparison with the creep curves shown in Fig. 2, it is
seen that additional axial strain of the yarn can be introduced if the ends of the yarn is allowed
to twist. It is found that when the ends of the yarn is free, the axial extension of the yarn is
accompanied by an untwist of the yarn. The angles of untwist per unit length of the yarn,
-~ w(t), are also shown in Fig. 6 by dotted lines. The effect of superposition of a twisting moment on
the elongation of the yarn is shown in Fig. 7. It is noted that when s increases, the helical angle
increases and consequently ¢,(1) decreases. When i is sufficiently large, ¢,(1) can become
negative. The filament stress £, (1) and the contact force p(1) are also plotted against # in Fig. 7. It
is found that f,(1) is essentially governed by f and the effect of the additional twisting moment on
£ (1) is insignificant. The contact force p(1) increases slightly with .

DISCUSSION

(1) The finite exiension of elastic wire cables has been investigated by Costello and
Phillips[9]. Their problem corresponds to our problem with T =0. The conclusions drawn in
their study are very much similar to what we have obtained here for the viscoelastic problem.

(2) The mechanical behavior of a yarn is governed chiefly by three factors—time, tempera-
ture and humidity. In this paper, our investigation is focused on the time-dependent charac-
teristics of the yarn and ignored the effects of temperature and humidity. Hence our problem is
restricted to the case of isothermal environment with constant humidity. Should the tempera-
ture and humidity also be time dependent the relaxation modulus used in our analysis must be
modified to include the effect of temperature and humidity.

(3) Our analysis is based on a model where the deformed cross section of the filament
remains circular. In reality, the contract of filaments are of Hertz's type in both undeformed
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and deformed states. Additional geometrical nonlinearity can be introduced by the Hertz's
contact deformation of the filament. The result given in this paper is valid if the width of
contact is small in comparison with the diameter of the filament.

(4) It is noted that the actual cross sections of filaments are not perfectly circular. Also their
distribution is not entirely uniform. To analyze a yarn with nonuniform filaments, statistical
theory must be employed. However, our study would still provide a general feature of the finite
deformation of viscoelastic multiple filament yarns.
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